Sesja 19: Integracja AI z systemami biznesowymi

Enterprise AI Integration Patterns

🎯 Cele sesji

  • Implementacja enterprise AI integration patterns
  • Azure Integration Services dla AI workloads
  • Event-driven architecture z AI processing
  • API design i security dla AI services

🔗 Enterprise AI Integration Patterns

Common Integration Architectures

INTEGRATION PATTERNS:

1. API-FIRST INTEGRATION:
[BUSINESS SYSTEM] ↔ [AI API GATEWAY] ↔ [AI SERVICES]
✓ Loose coupling
✓ Scalable i maintainable
✓ Technology agnostic

2. EVENT-DRIVEN INTEGRATION:
[BUSINESS EVENTS] → [EVENT HUB] → [AI PROCESSORS] → [RESULTS STORE]
✓ Real-time processing
✓ Asynchronous handling
✓ High throughput

3. BATCH INTEGRATION:
[SCHEDULED JOBS] → [DATA EXTRACT] → [AI PROCESSING] → [RESULTS IMPORT]
✓ Large volume processing
✓ Cost-effective
✓ Predictable resource usage

4. EMBEDDED INTEGRATION:
[APPLICATION] + [EMBEDDED AI MODELS] → [REAL-TIME DECISIONS]
✓ Low latency
✓ Offline capability
✓ Data privacy

Azure Integration Services dla AI

from azure.servicebus import ServiceBusClient, ServiceBusMessage
from azure.eventhub import EventHubProducerClient, EventData
from azure.storage.queue import QueueClient
import azure.functions as func
import json
import asyncio
from datetime import datetime

class EnterpriseAIOrchestrator:
    def __init__(self, config):
        self.servicebus_client = ServiceBusClient.from_connection_string(
            config["servicebus_connection"]
        )
        self.eventhub_client = EventHubProducerClient.from_connection_string(
            config["eventhub_connection"]
        )
        self.ai_services = {
            "document_ai": DocumentAIService(config["document_ai"]),
            "language_ai": LanguageAIService(config["language_ai"]),
            "vision_ai": VisionAIService(config["vision_ai"]),
            "custom_models": CustomModelService(config["custom_models"])
        }
        
    async def process_business_event(self, event_data):
        """Process incoming business event z AI services"""
        
        event_type = event_data.get("event_type")
        payload = event_data.get("payload")
        correlation_id = event_data.get("correlation_id", str(uuid.uuid4()))
        
        print(f"📨 Processing event: {event_type} (ID: {correlation_id})")
        
        try:
            if event_type == "document_uploaded":
                result = await self._process_document_upload(payload, correlation_id)
            elif event_type == "customer_inquiry":
                result = await self._process_customer_inquiry(payload, correlation_id)
            elif event_type == "transaction_completed":
                result = await self._process_transaction(payload, correlation_id)
            elif event_type == "support_ticket_created":
                result = await self._process_support_ticket(payload, correlation_id)
            else:
                raise ValueError(f"Unsupported event type: {event_type}")
            
            # Send results back to business system
            await self._publish_ai_results(result, correlation_id)
            
            return result
            
        except Exception as e:
            error_result = {
                "event_type": event_type,
                "correlation_id": correlation_id,
                "status": "error",
                "error": str(e),
                "timestamp": datetime.utcnow().isoformat()
            }
            
            await self._handle_processing_error(error_result)
            
            return error_result
    
    async def _process_document_upload(self, payload, correlation_id):
        """Process document upload event z comprehensive AI analysis"""
        
        document_url = payload["document_url"]
        document_type = payload.get("document_type", "unknown")
        business_context = payload.get("business_context", {})
        
        print(f"📄 Processing document: {document_type}")
        
        # Route to appropriate AI service based na document type
        if document_type == "contract":
            analysis_result = await self._analyze_contract(document_url, business_context)
        elif document_type == "invoice":
            analysis_result = await self._analyze_invoice(document_url, business_context)
        elif document_type == "compliance_document":
            analysis_result = await self._analyze_compliance_document(document_url, business_context)
        else:
            analysis_result = await self._analyze_general_document(document_url, business_context)
        
        # Business validation i enrichment
        validated_result = await self._validate_and_enrich_analysis(
            analysis_result, business_context
        )
        
        return {
            "event_type": "document_processed",
            "correlation_id": correlation_id,
            "document_id": payload["document_id"],
            "analysis_result": validated_result,
            "processing_timestamp": datetime.utcnow().isoformat(),
            "status": "completed"
        }
    
    async def _analyze_contract(self, document_url, business_context):
        """Specialized contract analysis using multiple AI services"""
        
        # Multi-step analysis workflow
        analysis_steps = []
        
        # Step 1: Document structure extraction
        print("🔍 Extracting contract structure...")
        structure_analysis = await self.ai_services["document_ai"].extract_structure(
            document_url,
            document_type="contract"
        )
        analysis_steps.append(("structure_extraction", structure_analysis))
        
        # Step 2: Legal entity recognition
        print("⚖️ Identifying legal entities...")
        entity_analysis = await self.ai_services["language_ai"].extract_legal_entities(
            structure_analysis["extracted_text"]
        )
        analysis_steps.append(("entity_recognition", entity_analysis))
        
        # Step 3: Risk assessment using custom model
        print("🚨 Assessing contract risks...")
        risk_analysis = await self.ai_services["custom_models"].assess_contract_risk(
            structure_analysis["extracted_text"],
            entity_analysis["entities"]
        )
        analysis_steps.append(("risk_assessment", risk_analysis))
        
        # Step 4: Compliance checking
        print("📋 Checking compliance requirements...")
        compliance_analysis = await self._check_contract_compliance(
            structure_analysis, entity_analysis, business_context
        )
        analysis_steps.append(("compliance_check", compliance_analysis))
        
        # Combine wszystkie results
        comprehensive_analysis = {
            "document_type": "contract",
            "structure": structure_analysis,
            "entities": entity_analysis,
            "risk_assessment": risk_analysis,
            "compliance": compliance_analysis,
            "overall_confidence": self._calculate_combined_confidence(analysis_steps),
            "recommended_actions": self._generate_contract_recommendations(analysis_steps),
            "processing_pipeline": [step[0] for step in analysis_steps]
        }
        
        return comprehensive_analysis
    
    async def _process_customer_inquiry(self, payload, correlation_id):
        """Process customer inquiry z intelligent routing"""
        
        inquiry_text = payload["inquiry_text"]
        customer_id = payload.get("customer_id")
        channel = payload.get("channel", "email")  # email, chat, phone
        
        # Multi-step processing
        processing_result = {
            "inquiry_analysis": {},
            "routing_decision": {},
            "automated_response": {},
            "escalation_needed": False
        }
        
        # Step 1: Intent i sentiment analysis
        print("🧠 Analyzing customer intent...")
        intent_analysis = await self.ai_services["language_ai"].analyze_customer_intent(
            inquiry_text,
            customer_context={"id": customer_id, "channel": channel}
        )
        processing_result["inquiry_analysis"] = intent_analysis
        
        # Step 2: Intelligent routing decision
        print("🎯 Determining routing...")
        routing_decision = await self._determine_inquiry_routing(
            intent_analysis, customer_id
        )
        processing_result["routing_decision"] = routing_decision
        
        # Step 3: Generate automated response (if applicable)
        if routing_decision["can_auto_respond"]:
            print("🤖 Generating automated response...")
            automated_response = await self._generate_customer_response(
                inquiry_text, intent_analysis, customer_id
            )
            processing_result["automated_response"] = automated_response
        else:
            processing_result["escalation_needed"] = True
            processing_result["escalation_reason"] = routing_decision["escalation_reason"]
        
        return {
            "event_type": "customer_inquiry_processed",
            "correlation_id": correlation_id,
            "customer_id": customer_id,
            "processing_result": processing_result,
            "timestamp": datetime.utcnow().isoformat()
        }

# Azure Functions integration dla event processing
@func.function_name("BusinessEventProcessor")
@func.service_bus_queue_trigger(
    arg_name="msg",
    queue_name="business-events",
    connection="ServiceBusConnection"
)
async def business_event_processor(msg: func.ServiceBusMessage):
    """Azure Function dla processing business events z AI"""
    
    try:
        # Parse event data
        event_data = json.loads(msg.get_body().decode('utf-8'))
        
        # Initialize AI orchestrator
        config = get_integration_config()
        orchestrator = EnterpriseAIOrchestrator(config)
        
        # Process event
        result = await orchestrator.process_business_event(event_data)
        
        # Log successful processing
        logging.info(f"Successfully processed event {event_data.get('correlation_id')}")
        
        return result
        
    except Exception as e:
        logging.error(f"Error processing business event: {str(e)}")
        
        # Send to dead letter queue dla manual review
        await send_to_dead_letter_queue(msg, str(e))
        
        raise

🏢 Enterprise Architecture Workshop

Workshop Project: Integrated AI Business Solution

Scenario: GlobalCorp needs AI-powered document processing system

Requirements:

  • 1000+ documents daily (contracts, invoices, reports)
  • 80% automation rate z human oversight
  • Integration z SAP, Salesforce, SharePoint
  • Compliance z SOX, GDPR, industry regulations
  • <30 second processing time per document

Architecture Implementation:

class GlobalCorpAISystem:
    def __init__(self):
        self.integration_layers = {
            "presentation": WebAPILayer(),
            "orchestration": BusinessLogicOrchestrator(), 
            "ai_services": AIServicesLayer(),
            "data": DataAccessLayer(),
            "external": ExternalSystemsIntegration()
        }
        
    async def initialize_system(self, config):
        """Initialize complete system architecture"""
        
        # Setup integration endpoints
        await self._setup_sap_integration(config["sap"])
        await self._setup_salesforce_integration(config["salesforce"])
        await self._setup_sharepoint_integration(config["sharepoint"])
        
        # Configure AI services
        await self._configure_ai_pipeline()
        
        # Setup monitoring i compliance
        await self._setup_monitoring_and_compliance()
        
        print("🏗️ GlobalCorp AI System initialized")
        
    async def _setup_sap_integration(self, sap_config):
        """Setup SAP integration dla financial documents"""
        
        sap_integration = {
            "connection_type": "REST_API",
            "authentication": "OAuth2",
            "endpoints": {
                "invoice_posting": f"{sap_config['base_url']}/sap/bc/rest/invoices",
                "vendor_lookup": f"{sap_config['base_url']}/sap/bc/rest/vendors",
                "approval_workflow": f"{sap_config['base_url']}/sap/bc/rest/workflows"
            },
            "data_mapping": {
                "ai_invoice_data": "sap_invoice_format",
                "vendor_entities": "sap_vendor_master",
                "approval_routing": "sap_workflow_triggers"
            }
        }
        
        # Test SAP connectivity
        connection_test = await self._test_sap_connection(sap_integration)
        
        if connection_test["success"]:
            print("✅ SAP integration configured")
        else:
            print(f"❌ SAP integration failed: {connection_test['error']}")
            
        return sap_integration

✅ Zadania praktyczne

Zadanie 1: API Gateway Design (45 min)

  1. Zaprojektuj AI API gateway dla enterprise
  2. Implement authentication i rate limiting
  3. Add request/response transformation
  4. Setup monitoring i logging

Zadanie 2: Event-Driven Processing (45 min)

  1. Implement event-driven AI processing
  2. Setup Azure Service Bus integration
  3. Add error handling i dead letter queues
  4. Create monitoring dashboard

Zadanie 3: Legacy System Integration (20 min)

  1. Design integration z legacy ERP system
  2. Implement data transformation layers
  3. Add compliance i audit logging
  4. Test end-to-end workflow

Zadanie 4: Security Implementation (10 min)

  1. Implement enterprise security patterns
  2. Add API authentication i authorization
  3. Setup data encryption in transit/rest
  4. Configure compliance monitoring

📊 Metryki sukcesu

  • Integration reliability > 99.5%
  • Data transformation accuracy > 99.9%
  • Processing latency < 2 seconds end-to-end
  • Security compliance - 100% audit requirements met

📚 Materiały dodatkowe

💡 Wskazówka

Każda sesja to 2 godziny intensywnej nauki z praktycznymi ćwiczeniami. Materiały można przeglądać w dowolnym tempie.

📈 Postęp

Śledź swój postęp w nauce AI i przygotowaniu do certyfikacji Azure AI-102. Każdy moduł buduje na poprzednim.