Sesja 21: Warsztaty - Budowa kompleksowego rozwiązania AI

Capstone project - complete enterprise AI solution

🎯 Cele warsztatów

  • Implementacja kompletnego enterprise AI solution
  • Integracja wszystkich poznanych technologii AI
  • Production deployment z monitoring i scaling
  • Portfolio project demonstrujący mastery skills

🏗️ Capstone Project: Intelligent Business Platform

Project Requirements

GlobalTech Corporation potrzebuje kompletnej platformy AI dla automatyzacji procesów biznesowych:

Core Capabilities:

  • Document Intelligence - automatyczne przetwarzanie wszystkich typów dokumentów
  • Conversational AI - intelligent customer service i employee support
  • Predictive Analytics - forecasting i risk assessment
  • Content Generation - automated report creation i communication
  • Knowledge Management - intelligent search across corporate knowledge

Technical Requirements:

  • Multi-channel input - web, mobile, email, voice, document upload
  • Real-time processing - <2s response time dla user interactions
  • Scalability - support dla 10,000+ concurrent users
  • Integration - SAP, Salesforce, Office 365, SharePoint
  • Compliance - SOX, GDPR, industry regulations
  • Availability - 99.9% uptime SLA

💻 Architecture Implementation

Complete System Architecture

from dataclasses import dataclass
from typing import Dict, List, Any, Optional
import asyncio
import json
from datetime import datetime
import uuid

@dataclass
class BusinessRequest:
    request_id: str
    user_id: str
    channel: str  # "web", "mobile", "email", "voice"
    content_type: str  # "text", "document", "image", "audio"
    content: Any
    business_context: Dict[str, Any]
    priority: int = 1

@dataclass
class ProcessingResult:
    request_id: str
    status: str  # "completed", "failed", "partial"
    results: Dict[str, Any]
    confidence_scores: Dict[str, float]
    processing_time_ms: float
    ai_services_used: List[str]
    business_actions: List[Dict[str, Any]]

class IntelligentBusinessPlatform:
    def __init__(self, config):
        self.config = config
        
        # Initialize wszystkie AI service layers
        self.document_processor = DocumentIntelligenceService(config["document_ai"])
        self.conversation_ai = ConversationalAIService(config["conversational_ai"])
        self.predictive_analytics = PredictiveAnalyticsService(config["predictive_ai"])
        self.content_generator = ContentGenerationService(config["content_ai"])
        self.knowledge_manager = KnowledgeManagementService(config["knowledge_ai"])
        
        # Business system integrations
        self.sap_integration = SAPIntegrationService(config["sap"])
        self.salesforce_integration = SalesforceIntegrationService(config["salesforce"])
        self.office365_integration = Office365IntegrationService(config["office365"])
        
        # Infrastructure services
        self.request_router = IntelligentRequestRouter()
        self.result_orchestrator = BusinessResultOrchestrator()
        self.monitoring_system = ComprehensiveMonitoringSystem()
        
        # Processing statistics
        self.platform_stats = {
            "total_requests": 0,
            "successful_automations": 0,
            "human_escalations": 0,
            "average_processing_time": 0,
            "business_value_generated": 0
        }
    
    async def process_business_request(self, request: BusinessRequest) -> ProcessingResult:
        """Main entry point dla business request processing"""
        
        start_time = datetime.utcnow()
        processing_id = request.request_id
        
        print(f"🔄 Processing business request {processing_id}")
        print(f"   Channel: {request.channel}")
        print(f"   Content type: {request.content_type}")
        print(f"   User: {request.user_id}")
        
        try:
            # Step 1: Request routing i classification
            routing_decision = await self.request_router.classify_and_route(request)
            
            # Step 2: AI processing based na routing
            ai_results = await self._execute_ai_processing_pipeline(
                request, routing_decision
            )
            
            # Step 3: Business logic integration
            business_actions = await self._execute_business_integration(
                ai_results, request.business_context
            )
            
            # Step 4: Result orchestration i formatting
            final_result = await self.result_orchestrator.finalize_result(
                ai_results, business_actions, request
            )
            
            processing_time = (datetime.utcnow() - start_time).total_seconds() * 1000
            
            # Update statistics
            self.platform_stats["total_requests"] += 1
            if final_result["automation_level"] > 0.8:
                self.platform_stats["successful_automations"] += 1
            self._update_average_processing_time(processing_time)
            
            return ProcessingResult(
                request_id=processing_id,
                status="completed",
                results=final_result,
                confidence_scores=ai_results.get("confidence_scores", {}),
                processing_time_ms=processing_time,
                ai_services_used=ai_results.get("services_used", []),
                business_actions=business_actions
            )
            
        except Exception as e:
            processing_time = (datetime.utcnow() - start_time).total_seconds() * 1000
            
            print(f"❌ Processing failed dla {processing_id}: {str(e)}")
            
            # Error handling i escalation
            await self._handle_processing_error(request, str(e))
            
            return ProcessingResult(
                request_id=processing_id,
                status="failed", 
                results={"error": str(e)},
                confidence_scores={},
                processing_time_ms=processing_time,
                ai_services_used=[],
                business_actions=[{"action": "escalate_to_human", "reason": "processing_error"}]
            )
    
    async def _execute_ai_processing_pipeline(self, request: BusinessRequest, 
                                            routing_decision: Dict) -> Dict:
        """Execute AI processing pipeline based na routing decision"""
        
        pipeline_results = {
            "services_used": [],
            "individual_results": {},
            "confidence_scores": {},
            "processing_steps": []
        }
        
        # Execute AI services based na routing decision
        required_services = routing_decision["required_services"]
        
        for service_name in required_services:
            print(f"🤖 Executing {service_name}...")
            
            try:
                if service_name == "document_intelligence":
                    result = await self.document_processor.analyze_document(
                        request.content, request.business_context
                    )
                elif service_name == "conversational_ai":
                    result = await self.conversation_ai.process_conversation(
                        request.content, request.business_context
                    )
                elif service_name == "predictive_analytics":
                    result = await self.predictive_analytics.generate_predictions(
                        request.content, request.business_context
                    )
                elif service_name == "content_generation":
                    result = await self.content_generator.generate_content(
                        request.content, request.business_context
                    )
                elif service_name == "knowledge_search":
                    result = await self.knowledge_manager.search_knowledge(
                        request.content, request.business_context
                    )
                else:
                    continue
                
                pipeline_results["services_used"].append(service_name)
                pipeline_results["individual_results"][service_name] = result
                pipeline_results["confidence_scores"][service_name] = result.get("confidence", 0.5)
                pipeline_results["processing_steps"].append({
                    "service": service_name,
                    "timestamp": datetime.utcnow().isoformat(),
                    "success": True
                })
                
                print(f"✅ {service_name} completed (confidence: {result.get('confidence', 0.5):.2f})")
                
            except Exception as e:
                print(f"❌ {service_name} failed: {str(e)}")
                pipeline_results["processing_steps"].append({
                    "service": service_name,
                    "timestamp": datetime.utcnow().isoformat(),
                    "success": False,
                    "error": str(e)
                })
        
        # Cross-service result fusion
        if len(pipeline_results["services_used"]) > 1:
            print("🔗 Fusing cross-service results...")
            fusion_result = await self._fuse_cross_service_results(
                pipeline_results["individual_results"]
            )
            pipeline_results["fusion_analysis"] = fusion_result
        
        return pipeline_results
    
    async def _execute_business_integration(self, ai_results: Dict, 
                                          business_context: Dict) -> List[Dict]:
        """Execute business system integrations based na AI results"""
        
        business_actions = []
        
        # Determine required business actions based na AI results
        for service, result in ai_results.get("individual_results", {}).items():
            
            if service == "document_intelligence":
                # Document processing actions
                doc_actions = await self._handle_document_processing_result(result, business_context)
                business_actions.extend(doc_actions)
                
            elif service == "conversational_ai":
                # Customer service actions
                cs_actions = await self._handle_customer_service_result(result, business_context)
                business_actions.extend(cs_actions)
                
            elif service == "predictive_analytics":
                # Predictive actions
                pred_actions = await self._handle_predictive_analytics_result(result, business_context)
                business_actions.extend(pred_actions)
        
        # Execute business actions
        executed_actions = []
        for action in business_actions:
            try:
                execution_result = await self._execute_business_action(action)
                executed_actions.append({
                    **action,
                    "execution_status": "completed",
                    "execution_result": execution_result,
                    "executed_at": datetime.utcnow().isoformat()
                })
                
            except Exception as e:
                executed_actions.append({
                    **action,
                    "execution_status": "failed",
                    "error": str(e),
                    "executed_at": datetime.utcnow().isoformat()
                })
        
        return executed_actions
    
    async def _handle_document_processing_result(self, doc_result: Dict, 
                                                business_context: Dict) -> List[Dict]:
        """Handle document processing results z business actions"""
        
        actions = []
        
        doc_type = doc_result.get("document_type", "unknown")
        confidence = doc_result.get("confidence", 0)
        
        if doc_type == "invoice" and confidence > 0.9:
            # High confidence invoice - auto-process
            actions.append({
                "action_type": "sap_invoice_posting",
                "target_system": "sap",
                "data": doc_result["extracted_data"],
                "automation_level": "full",
                "requires_approval": doc_result["extracted_data"].get("amount", 0) > 10000
            })
            
        elif doc_type == "contract" and confidence > 0.8:
            # Contract analysis - route dla legal review
            actions.append({
                "action_type": "legal_review_routing",
                "target_system": "workflow_engine",
                "data": {
                    "contract_summary": doc_result["summary"],
                    "risk_assessment": doc_result["risk_analysis"],
                    "entities": doc_result["legal_entities"]
                },
                "automation_level": "assisted",
                "requires_approval": True
            })
            
        elif confidence < 0.7:
            # Low confidence - human review
            actions.append({
                "action_type": "human_review_queue",
                "target_system": "workflow_engine",
                "data": doc_result,
                "automation_level": "manual",
                "priority": "high" if doc_type in ["contract", "compliance"] else "normal"
            })
        
        return actions

class IntelligentRequestRouter:
    def __init__(self):
        self.routing_rules = {
            "document_upload": ["document_intelligence", "knowledge_search"],
            "customer_inquiry": ["conversational_ai", "knowledge_search"],
            "data_analysis_request": ["predictive_analytics", "content_generation"],
            "content_creation": ["content_generation", "knowledge_search"],
            "support_ticket": ["conversational_ai", "knowledge_search", "predictive_analytics"]
        }
    
    async def classify_and_route(self, request: BusinessRequest) -> Dict:
        """Classify request i determine routing"""
        
        # Classify request type based na content i context
        request_classification = await self._classify_request_type(request)
        
        # Determine required AI services
        required_services = self.routing_rules.get(
            request_classification["primary_type"], 
            ["conversational_ai"]  # Default fallback
        )
        
        # Add conditional services based na content analysis
        if request_classification.get("complexity", "low") == "high":
            if "predictive_analytics" not in required_services:
                required_services.append("predictive_analytics")
        
        if request_classification.get("requires_generation", False):
            if "content_generation" not in required_services:
                required_services.append("content_generation")
        
        routing_decision = {
            "request_classification": request_classification,
            "required_services": required_services,
            "processing_priority": self._determine_priority(request, request_classification),
            "estimated_processing_time": self._estimate_processing_time(required_services),
            "automation_potential": self._assess_automation_potential(request_classification)
        }
        
        print(f"🎯 Routing decision: {routing_decision['required_services']}")
        print(f"   Priority: {routing_decision['processing_priority']}")
        print(f"   Automation potential: {routing_decision['automation_potential']:.1%}")
        
        return routing_decision

🛠️ Workshop Implementation (120 min)

Phase 1: System Architecture (30 min)

# Complete system setup
async def setup_intelligent_business_platform():
    """Setup complete platform infrastructure"""
    
    # Configuration dla wszystkich services
    platform_config = {
        "azure_openai": {
            "endpoint": "https://your-openai.openai.azure.com/",
            "api_key": "your-openai-key",
            "deployments": {
                "gpt-4-turbo": "gpt-4-turbo-deployment",
                "gpt-35-turbo": "gpt-35-turbo-deployment", 
                "text-embedding": "text-embedding-deployment"
            }
        },
        "azure_ai_services": {
            "computer_vision": {
                "endpoint": "https://your-vision.cognitiveservices.azure.com/",
                "subscription_key": "your-vision-key"
            },
            "speech_services": {
                "subscription_key": "your-speech-key",
                "region": "eastus"
            },
            "language_services": {
                "endpoint": "https://your-language.cognitiveservices.azure.com/",
                "subscription_key": "your-language-key"
            }
        },
        "azure_search": {
            "endpoint": "https://your-search.search.windows.net",
            "admin_key": "your-search-key",
            "index_name": "corporate-knowledge"
        },
        "business_systems": {
            "sap": {
                "base_url": "https://your-sap-system.com",
                "client_id": "sap-client-id",
                "client_secret": "sap-secret"
            },
            "salesforce": {
                "instance_url": "https://your-org.salesforce.com",
                "access_token": "sf-token"
            }
        }
    }
    
    # Initialize platform
    platform = IntelligentBusinessPlatform(platform_config)
    
    # Run system health checks
    health_status = await platform.run_comprehensive_health_check()
    
    if health_status["overall_health"] == "healthy":
        print("✅ Platform initialization successful")
        return platform
    else:
        print(f"⚠️ Platform health issues detected: {health_status['issues']}")
        return None

# Workshop participants implement this
workshop_platform = await setup_intelligent_business_platform()

Phase 2: Core Services Implementation (45 min)

class DocumentIntelligenceService:
    def __init__(self, config):
        self.form_recognizer = FormRecognizerClient(config)
        self.custom_models = CustomModelRegistry(config)
        
    async def analyze_document(self, document_data, business_context):
        """Comprehensive document analysis"""
        
        # Multi-step document processing
        analysis_pipeline = [
            ("classification", self._classify_document_type),
            ("extraction", self._extract_structured_data),
            ("validation", self._validate_business_rules),
            ("enrichment", self._enrich_with_business_context)
        ]
        
        document_analysis = {
            "document_id": str(uuid.uuid4()),
            "processing_timestamp": datetime.utcnow().isoformat(),
            "pipeline_results": {},
            "overall_confidence": 0,
            "business_validation": {}
        }
        
        current_data = document_data
        
        for step_name, step_function in analysis_pipeline:
            try:
                step_result = await step_function(current_data, business_context)
                document_analysis["pipeline_results"][step_name] = step_result
                
                # Update data dla next step
                if "processed_data" in step_result:
                    current_data = step_result["processed_data"]
                    
                print(f"✅ Document analysis step '{step_name}' completed")
                
            except Exception as e:
                document_analysis["pipeline_results"][step_name] = {
                    "status": "failed",
                    "error": str(e)
                }
                print(f"❌ Document analysis step '{step_name}' failed: {str(e)}")
        
        # Calculate overall confidence
        confidences = [
            result.get("confidence", 0) 
            for result in document_analysis["pipeline_results"].values()
            if isinstance(result, dict) and "confidence" in result
        ]
        
        if confidences:
            document_analysis["overall_confidence"] = sum(confidences) / len(confidences)
        
        return document_analysis

class ConversationalAIService:
    def __init__(self, config):
        self.llm_client = AzureOpenAIClient(config)
        self.conversation_memory = ConversationMemoryManager()
        self.intent_classifier = IntentClassificationService()
        
    async def process_conversation(self, user_input, business_context):
        """Process conversational input z business context"""
        
        user_id = business_context.get("user_id", "anonymous")
        session_id = business_context.get("session_id", str(uuid.uuid4()))
        
        # Multi-step conversation processing
        conversation_result = {
            "session_id": session_id,
            "user_input": user_input,
            "processing_steps": {},
            "response_generated": "",
            "confidence": 0,
            "requires_escalation": False
        }
        
        try:
            # Step 1: Intent classification
            intent_analysis = await self.intent_classifier.classify_intent(
                user_input, business_context
            )
            conversation_result["processing_steps"]["intent"] = intent_analysis
            
            # Step 2: Context retrieval
            conversation_history = await self.conversation_memory.get_context(session_id)
            relevant_knowledge = await self._retrieve_relevant_knowledge(
                user_input, intent_analysis
            )
            
            # Step 3: Response generation
            response = await self._generate_contextual_response(
                user_input=user_input,
                intent=intent_analysis,
                conversation_history=conversation_history,
                knowledge_context=relevant_knowledge,
                business_context=business_context
            )
            
            conversation_result["response_generated"] = response["text"]
            conversation_result["confidence"] = response["confidence"]
            conversation_result["processing_steps"]["generation"] = response
            
            # Step 4: Update conversation memory
            await self.conversation_memory.update_conversation(
                session_id, user_input, response["text"]
            )
            
            # Step 5: Determine if escalation needed
            if (intent_analysis.get("confidence", 0) < 0.6 or 
                response["confidence"] < 0.7 or
                intent_analysis.get("intent") == "complex_issue"):
                
                conversation_result["requires_escalation"] = True
                conversation_result["escalation_reason"] = "Low confidence or complex issue"
            
            return conversation_result
            
        except Exception as e:
            conversation_result["processing_steps"]["error"] = str(e)
            conversation_result["requires_escalation"] = True
            conversation_result["escalation_reason"] = f"Processing error: {str(e)}"
            
            return conversation_result

Phase 3: Business Integration (30 min)

class BusinessResultOrchestrator:
    def __init__(self):
        self.result_templates = {
            "document_processed": self._format_document_result,
            "conversation_completed": self._format_conversation_result,
            "analysis_generated": self._format_analysis_result,
            "content_created": self._format_content_result
        }
        
    async def finalize_result(self, ai_results: Dict, business_actions: List[Dict], 
                             original_request: BusinessRequest) -> Dict:
        """Finalize i format results dla business consumption"""
        
        # Determine primary result type
        primary_service = self._determine_primary_service(ai_results["services_used"])
        result_type = self._map_service_to_result_type(primary_service)
        
        # Format using appropriate template
        if result_type in self.result_templates:
            formatted_result = await self.result_templates[result_type](
                ai_results, business_actions, original_request
            )
        else:
            # Generic formatting
            formatted_result = await self._format_generic_result(
                ai_results, business_actions, original_request
            )
        
        # Add platform metadata
        formatted_result.update({
            "platform_metadata": {
                "request_id": original_request.request_id,
                "processing_timestamp": datetime.utcnow().isoformat(),
                "user_id": original_request.user_id,
                "channel": original_request.channel,
                "ai_services_used": ai_results["services_used"],
                "automation_level": self._calculate_automation_level(business_actions),
                "business_value_score": self._calculate_business_value(ai_results, business_actions)
            }
        })
        
        return formatted_result
    
    def _calculate_automation_level(self, business_actions: List[Dict]) -> float:
        """Calculate level of automation achieved"""
        
        if not business_actions:
            return 0.0
        
        automated_actions = len([
            action for action in business_actions 
            if action.get("automation_level") == "full"
        ])
        
        assisted_actions = len([
            action for action in business_actions
            if action.get("automation_level") == "assisted"
        ]) * 0.5  # Partial automation credit
        
        total_automation_score = automated_actions + assisted_actions
        automation_level = total_automation_score / len(business_actions)
        
        return min(automation_level, 1.0)

Phase 4: Testing i Deployment (15 min)

class PlatformTester:
    def __init__(self, platform):
        self.platform = platform
        
    async def run_end_to_end_tests(self):
        """Comprehensive platform testing"""
        
        test_scenarios = [
            {
                "name": "Document Upload Workflow",
                "request": BusinessRequest(
                    request_id=str(uuid.uuid4()),
                    user_id="test_user_1",
                    channel="web",
                    content_type="document",
                    content={"document_url": "test_invoice.pdf"},
                    business_context={"department": "finance"}
                ),
                "expected_services": ["document_intelligence"],
                "expected_actions": ["sap_invoice_posting"]
            },
            {
                "name": "Customer Support Conversation",
                "request": BusinessRequest(
                    request_id=str(uuid.uuid4()),
                    user_id="customer_123",
                    channel="chat",
                    content_type="text",
                    content="I have an issue with my recent order",
                    business_context={"customer_tier": "premium"}
                ),
                "expected_services": ["conversational_ai", "knowledge_search"],
                "expected_actions": ["salesforce_case_creation"]
            }
        ]
        
        test_results = []
        
        for scenario in test_scenarios:
            print(f"\n🧪 Testing scenario: {scenario['name']}")
            
            try:
                # Execute test
                result = await self.platform.process_business_request(scenario["request"])
                
                # Validate results
                validation = self._validate_test_result(result, scenario)
                
                test_results.append({
                    "scenario": scenario["name"],
                    "status": "passed" if validation["valid"] else "failed",
                    "validation": validation,
                    "processing_time": result.processing_time_ms,
                    "automation_achieved": len([
                        action for action in result.business_actions 
                        if action.get("automation_level") == "full"
                    ])
                })
                
                status_emoji = "✅" if validation["valid"] else "❌"
                print(f"{status_emoji} {scenario['name']}: {validation['summary']}")
                
            except Exception as e:
                test_results.append({
                    "scenario": scenario["name"],
                    "status": "error",
                    "error": str(e)
                })
                print(f"❌ {scenario['name']}: Error - {str(e)}")
        
        # Summary
        passed_tests = len([t for t in test_results if t["status"] == "passed"])
        total_tests = len(test_results)
        
        print(f"\n📊 Test Results: {passed_tests}/{total_tests} scenarios passed")
        
        return {
            "test_results": test_results,
            "success_rate": passed_tests / total_tests,
            "platform_ready": passed_tests == total_tests
        }

✅ Zadania warsztatowe

Projekt główny: Complete Business AI Platform (90 min)

Deliverables:

  1. Full architecture - wszystkie layers i integrations (30 min)
  2. Core AI services - document, conversation, analytics (45 min)
  3. Business integration - SAP/Salesforce connectors (15 min)

Final Assessment

Technical Excellence (50 punktów)

  • Architecture completeness (15 pkt)
  • AI services integration (20 pkt)
  • Business system integration (15 pkt)

Innovation i Creativity (30 punktów)

  • Unique features implementation (15 pkt)
  • User experience design (15 pkt)

Production Readiness (20 punktów)

  • Error handling i monitoring (10 pkt)
  • Scalability considerations (10 pkt)

🎓 Capstone Project Presentation

Presentation Requirements (15 min presentations)

Demo Structure:

  1. Business problem overview (2 min)
  2. Solution architecture (3 min)
  3. Live demo of key features (7 min)
  4. Technical challenges i solutions (2 min)
  5. Next steps i roadmap (1 min)

Evaluation Criteria:

  • Technical sophistication - complexity i quality of implementation
  • Business relevance - practical value dla enterprise use
  • Innovation - creative use of AI technologies
  • Presentation quality - clarity i professionalism

🏆 Rezultat warsztatów

Po ukończeniu uczestnicy będą mieli:

  1. Complete enterprise AI solution - portfolio-ready project
  2. End-to-end implementation experience - wszystkie layers i integrations
  3. Production deployment skills - real-world applicable knowledge
  4. Presentation i demo capabilities - professional showcasing skills

Congratulations! Jesteś teraz gotowy jako Azure AI Engineer! 🎉


📚 Materiały dodatkowe

💡 Wskazówka

Każda sesja to 2 godziny intensywnej nauki z praktycznymi ćwiczeniami. Materiały można przeglądać w dowolnym tempie.

📈 Postęp

Śledź swój postęp w nauce AI i przygotowaniu do certyfikacji Azure AI-102. Każdy moduł buduje na poprzednim.